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Introduction 
All wounds, especially chronic ones, become colonized 

with bacteria. It arises from the patient’s skin, respiratory tract, 
gastrointestinal tract, or where exogenous bacteria are transferred 
from the environment or conveyed on the hands of healthcare 
workers [1-3]. When the bacterial load reaches 105 CFU/G, which 
is colony forming units per gram of tissue, the wound is considered 
infected; when levels are greater than or equal to 106 CFU/G or when 
greater or equal to four species are present, failure to heal may occur 
[4,5]. The formation of microbial biofilms within wounds has now 
been associated with a failure to heal [6-8]. Compared with their 
planktonic counterparts, microorganisms within a biofilm are highly 
resistant to environmental stresses and host immune responses and 
are tolerant to antimicrobials [9-12]. Most of these infections begin 
with colonization by Gram-positive cocci, followed by different genera 
of Gram-negative bacilli from the host or the environment; over time 
the infections become polymicrobial, consisting of numerous species 
including obligate anaerobes [13-16]. Once formed, the biofilm 
prevents wound contracture and epithelization, dysregulates the host 
immune response by affecting intracellular signaling, and damages the 
tissue through a combination of chronic inflammation and microbial 
virulence factors [17-19]. 

In nature, as well as at different infection sites, microorganisms 
can exist within a protective structure termed biofilm, which consist 
of mushroom-like multicellular structures that are surrounded by 
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an extracellular polymeric substance or extracellular polysaccharide 
matrix (EPS) formed from bacterial and host products [20,21]. 
Biofilm infected wounds are difficult to treat. Encasement of the 
bacterial pathogens within the EPS, combined with the presence 
of necrosis from the surrounding wound bed and decreased blood 
flow to the compromised areas, prevents host defense responses 
from reaching the infected tissue and eliminating the infection and 
protects the pathogens within from the systemically administered 
antibiotics [22-24]. Strategies to treat wound biofilms are multi-
faceted, including debridement to remove the biofilm and necrotic 
tissue, wound dressings to control moisture in the wound bed and 
to protect granulating tissue from damage, and treatment of the 
wound bed with topical antimicrobials to prevent recurrence of 
the microorganism [25-27]. Bacterial biofilms start to form when 
planktonic bacterial cells adhere to the wound surface by attaching 
to the exposed extracellular matrix proteins. Within about two 
hours, the bacteria rapidly begin expressing extracellular polymeric 
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substances and up to 800 new proteins to form a microcolony [28]. 
Medially secreted structures intrinsically block the host immune cells, 
common antibiotics, and biocides from reaching the bacterial cells; 
thus, different treatment strategies than those used for planktonic 
bacteria are required in such cases [29]. Therefore, the objective of 
this study was to test and to compare the prevention of biofilm growth 
on an antimicrobial wound matrix (PuraPly; Organogenesis; Canton, 
MA) and in a biofilm disrupting technology (BlastX; Next Science; 
Jacksonville, FL) used to protect graft material, using the Montana 
State University CBE colony drip-flow reactor (cDFR). Untreated 
gauze was also tested for comparison.

Methods and Materials
The cDFR is a model for growing in vitro biofilms that mimic 

the chronic wound environment and has been used for both single 
species [30,31] and polymicrobial biofilms [32]. It utilizes the standard 
drip-flow biofilm reactor (DFR 100-4, Biosurface Technologies 
Corp., Bozeman, MT) with an absorbent pad and membranes. The 
membranes are inoculated and fresh, flowing nutrients are supplied. 
The nutrients are wicked upwards through the pad, feeding the 
microorganisms on the membrane, and mimicking wound exudate. 
The biofilm forms on the top of the membrane. The 2.5 cm diameter 
absorbent pads (AP1002500, Merck Millipore Ltd, Cork IRL) were 
attached to the centers of glass microscope slides (48300-047, VWR 
International) using a small drop of silicone adhesive and the 
slides were placed in the reactor. The reactor was then sterilized by 
autoclave. Immediately prior to inoculation, the absorbent pads 
were hydrated with the growth medium, 10%-strength brain-heart 
infusion broth (Difco™ 237200, Becton Dickenson, Sparks, MD) and 
ultraviolet-sterilized 13 mm diameter 0.22 µm pore size polycarbonate 
membranes (GE Water & Process Technologies, Trevose, PA) were 
placed on the absorbent pads.

Mixed-species biofilms were formed using methicillin-resistant 
Staphylococcus aureus (MRSA) strain 10943 and Pseudomonas 
aeruginosa strain 215. These are chronic wound clinical isolates 
obtained from the Southwest Regional Wound Care Center in 
Lubbock, TX and are maintained at -70°C as a frozen stock cultures 
in the CBE. Inocula were grown overnight from frozen stock cultures 
in 10%-strength brain-heart infusion broth (BHI, Difco™ 237200, 
Becton Dickenson, Sparks, MD). The P. aeruginosa culture was 
diluted 1:10 with phosphate-buffered saline (PBS) and then mixed 
1:1 with the MRSA culture and 10 µL of the mixture was applied to 
the center of the polycarbonate membrane. The inoculum was dried 
for 15 minutes and then the gauze, PuraPly, and BlastX were applied. 
One membrane had nothing applied, to serve as an untreated control. 
Flow of growth medium (exudate) was then initiated at a rate of 5 ml/
hr per channel and the CDFR was incubated at 33°C (approximate 
wound temperature) for 24 hours. 

For plate counts, each sample was placed in 10ml of sterile 
double-strength D/E Neutralizing Broth (Becton, Dickinson, and 
Company, Sparks, MD) to neutralize the treatments. The samples 
were then subjected to 30 seconds of vortexing and two minutes of 
sonication, followed by an additional 30 seconds of vortexing. Serial 
10-fold dilutions were made using sterile PBS, and the dilutions were 
plated on Pseudomonas Isolation Agar and Staphylococcus Medium 
110 (Becton, Dickinson, and Company, Sparks, MD). After 24 hours 
of incubation at 37°C, the plates were counted and the colony forming 
units (CFU) per membrane was calculated. Three repeat experiments 
were conducted and mean CFU/membrane and Log Reduction (LR) 
were calculated. The LR for PuraPly and BlastX were compared by 
ANOVA using Minitab software and a 95% confidence interval.

For confocal scanning laser microscopy (CSLM), the dressing/
membrane pairs were removed from the reactor and placed on a 

microscope slide, and saturated with LIVE/DEAD BacLight Bacterial 
Viability Kit (Life Technologies, Carlsbad, CA). The sample was 
incubated in the dark for 10 minutes at room temperature. The 
samples were then covered with 1.5% noble agar and examined using 
a Leica SP5 confocal scanning laser microscope. Image processing was 
done using Imaris™ software.

Results
The P. aeruginosa and S. aureus biofilm prevention plate count 

results are shown in Figure 1. For P. aeruginosa, CFU counts in all 
three experiments were below detection limits for BlastX-treated 
samples, which indicated reduction of over 8-log (mean 8.41 LR). This 
was significantly different from the gauze treated samples (p=0.010), 
and the PuraPly material (p=0.047). The PuraPly-treated samples had 
a more variable reduction (mean 3.31 LR) and were not significantly 
different from gauze (p=0.170).

The BlastX treatment also had a high reduction of MRSA (mean 
6.81 LR), which was significantly different from both the gauze 
(p=0.003) and PuraPly (p=0.008) treatments. The MRSA reduction 
for the PuraPly treatment (mean 0.45 LR) was not significantly 
different from gauze (p=0.350).

Overall, the CSLM results, as shown in Figure 2, agreed with the 
plate count results. Bacteria within the gauze-treated control biofilms 
emitted primarily green fluorescence indicating live bacteria. The 
PuraPly -treated biofilms emitted both red and green fluorescence, 
indicating a mixture of live and dead bacteria. In contrast, the BlastX-
treated biofilms emitted primarily red fluorescence indicating that 
most of the bacteria were dead.

Discussion
According to the National Institutes of Health (United States), 

over 80% of persistent microbial infections within the body involve 
biofilms. Prevalent examples of biofilm associated infections include 
chronic lung infections, periodontitis, endocarditis, and osteomyelitis 
[33-35]. The cost of infections represents a major portion of the 
healthcare budget, and these costs continue to grow in exponential 
rates [36].

Diabetic extremity ulcerations develop in approximately 20% of 
people with diabetes and are the leading cause of hospitalization and 
amputation among such patients. Wound infection, faulty wound 

 

Figure 1: The mean growth of P. aeruginosa and S. aureus 
after 24 hours from the control; gauze; and PuraPly and BlastX 
treated samples shown in log CFU. Samples not under the 
horizontal bars are statistically significant (p-value of <0.05). 
The mean biofilm growth was calculated from 3 repeated 
experiments.
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healing, and ischemia in combination with foot ulcers are the most 
common precursors to diabetes related amputations. 85% of lower 
limb amputations in patients with diabetes are preceded by biofilm 
infected foot ulcerations [37-39]. More than 80,000 amputations are 
performed on the United States diabetic population each year [40]. 
Diabetic foot ulcer infections followed by amputations contribute 
dramatically not only to the morbidity among persons with diabetes, 
but are also associated with severe clinical depression and dramatically 
increased mortality rates [41]. Such infected ulcers resulting in 
amputation account for a three-fold increase risk of death within 18 
months. As such, diabetic foot ulcers are the most common, disabling, 
and costly complications of diabetes [42,43]. 

A primary impediment to the healing of chronic wounds is 
biofilm phenotype infections [44-45]. Biofilms, by definition, are the 
ubiquitous and natural phenotype of bacteria. They typically consist 
of the polymicrobial populations of cells, which are attached to a 
surface and encase themselves in the hydrated extracellular polymeric 
substances. Microbial populations that have attached to biological 
or nonbiological surfaces are the most basic description of medical 
biofilm. Thus, most chronic infections, including bacterial, that are 
associated with chronic wounds, do exist in biofilm [46-48]. Thus, 
bacteria that reside within these mature biofilms are highly resistant 
to many traditional therapies. New strategies must be developed so 
that we can treat these biofilms effectively, safely, and expeditiously. 
The longer these wounds stay open, the greater the risk and increase 
in morbidity and mortality.

In this study, we compared antimicrobial wound matrix PuraPly, 
which is touted as having biofilm-destroying capabilities through 
the incorporation of polyhexamethylene biguanide (PHMB). This 
antimicrobial agent is an antiseptic. It is a synthetic compound that 
has a chemical structure similar to antimicrobial peptides (AMPs) 
that occur naturally in keratinocytes and neutrophils. Naturally 
occurring AMPs are produced as a normal immune response and 
have antibacterial, antiviral, and antifungal affects [49,50]. 

The high osmolarity surfactant (BlastX) has the capability to bind 

to the metal ions within the EPS to be able to pull these polymers 
out into solution, in effect “unzipping” the biofilm and exposing 
the bacteria that lie deep within the biofilm. Bacteria within the 
EPS typically occupy 5% to 30% of the volume of the biofilm. The 
thickness or dimension of cell clusters in the biofilm can range from 
a few microns to a few millimeters. Nutrients and metabolic waste 
either diffuse directly through the biofilm or are transported through 
open water channels [51,52]. By utilizing BlastX, and through the 
high osmolarity and surfactant, we are able to disrupt and swell the 
dormant bacterial biofilm and are able to lyse not only the biofilm, 
but also any planktonic bacteria that are found on the surface of the 
biofilm. In biofilms, poor antibiotic penetration, nutrient limitation, 
slow growth, adaptive stress responses, and inclusion of phenotypic 
variants are shown to mediate resistance to antibiotics and to 
biocides [53]. In certain conditions, biofilm bacteria have a ten-fold 
higher intercellular survival rate than planktonic bacteria [54]. This 
multitude of defense mechanisms created by the biofilm can enhance 
the chronicity and persistence of chronic wounds, therefore increasing 
morbidity and mortality. 

In this study, we show that the biofilm disrupting technology 
had a significantly large statistical degradation of biofilms produced 
by two very virulent and commonly encountered bacteria in chronic 
wounds, while the antimicrobial wound matrix performance was no 
better statistically than gauze in the treatment of these biofilms. 

Therefore, this biofilm disrupting technology demonstrates 
significant degrading and destructive effects upon frequently 
encountered chronic wound bacterium and was far superior to the 
antimicrobial wound matrix. Biofilm disruption promises to remove 
one of the greatest barriers to healing and will substantially improve 
wound closure rates, outcomes, and cost savings. 

Conclusions 
The use of the antimicrobial matrix did not induce a statistically 

significant decrease in biofilm growth as compared to the gauze 
control. In comparison to the antimicrobial matrix material, the use 
of biofilm disrupting technology yielded a statistically significant 
8-log reduction in Pseudomonas aeruginosa and a 6.8-log reduction in 
Methicillin-Resistant Staphylococcus aureus (MRSA) biofilm growth. 
As such, the use of biofilm disrupting technology on graft materials 
should be substantially more effective in preventing biofilm growth.
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